2 MIN READ | Neuropsychology

News Release

Dynamic Cells Linked to Brain Tumour Growth and Recurrence

Cite This
News Release, (2022, June 28). Dynamic Cells Linked to Brain Tumour Growth and Recurrence. Psychreg on Neuropsychology. https://www.psychreg.org/dynamic-cells-linked-brain-tumour-growth-recurrence/
Reading Time: 2 minutes

Tumours are made up of many types of cells, both cancerous and benign. The specific complexity of the cells inside brain tumors has been a trademark of the disease, one that makes treatment extremely difficult. While scientists have long known about the variety of cells within a brain tumor, the ways these tumors grow has relied on the understanding that the cells are static, unmoving and relatively fixed.

But researchers at the University of Michigan Department of Neurosurgery and Rogel Cancer Center have discovered that these aggressive tumors contain highly active cells that move throughout tissue in complicated patterns. What’s more, the accumulations of these elongated, spindle-like cells found throughout the tumor, coined ‘oncostreams,’ serve as the basis for cancerous cells’ behavior, determining how tumors grow and invade normal tissue.

Pedro Lowenstein, M.D., Ph.D., Richard C. Schneider Collegiate Professor of Neurosurgery and lead author of this study published in Nature Communications, says this organised growth is what makes brain tumors so relentless. ‘Brain tumours are highly lethal, with less than 5% of patients living beyond five years,’ he said. ‘Unfortunately, reoccurrence is what eventually kills patients. They receive surgery for their initial tumor, but the tumor always comes back within 12 to 18 months,’ he said.  

Lowenstein and his team, including Maria Castro, PhD, also found that overexpression of Collagen 1, a protein produced by tumor cells, is essential to the growth and function of these structures.

‘When we eliminated Collagen 1 production from tumor cells, the animal models with brain tumours lived much longer. This step removes oncostreams from tumors and reduces tumour aggressive behaviour because the tumors need Collagen 1 to move in the specific way we discovered,’ said Lowenstein.

Lowenstein says this structure is likely present in other types of cancer, too. ‘Once people recognise that there are dynamic areas of the tumour, and that they’re related to tumor growth, eventual invasion and death, people will likely locate oncostreams in other tumor models,u he said.

To detect this previously unknown presence of oncostreams, the team collaborated with Todd Hollon, MD, assistant professor in the Michigan Medicine Department of Neurological Surgery, and Sebastien Motsch, PhD, associate professor of mathematics at Arizona State Universityto implement artificial intelligence methods to identify the structures in tissue.

‘Essentially, we showed images to a computer and the computer eventually learns to recognise oncostreams,’ Lowenstein explained.

Dismantling oncostreams through the removal of Collagen 1 could represent a novel therapeutic target to treat lethal brain tumours. ‘This research proves the crucial importance of continuing to investigate the complicated extracellular matrix,’ notes Andrea Comba, PhD, research investigator and first author of the study.

‘Based on this discovery, we propose targeting tumour collagen to disrupt oncostreams, and as novel therapy for the treatment of brain glioma,’ she said.


Psychreg is mainly for information purposes only; materials on this website are not intended to be a substitute for professional advice. Don’t disregard professional advice or delay in seeking  treatment because of what you have read on this website. Read our full disclaimer

Copy link